these are the only non-bonded interatomic distances less than $3.3 \AA$.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. Sl-S19.
Cheung, K.-K., Galembeck, S., Miller, J., de Oliveira, M. B., Pereira, A. B. \& Simas, A. M. (1992). Acta Cryst. C48, 523-525.
Earl, J. C., Leake, E. M. W. \& Le Fèvre, R. J. W. (1948). J. Chem. Soc. pp. 2269-2275.
Echevarria, A. \& Miller, J. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1425-1428.

Enraf-Nonius (1985). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Flippen, J. L. (1972). Acta Cryst. B28, 2749-2754.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., DeclercQ, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Mathew, M. \& Palenik, G. J. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 532-536.
Senda, H., Matsuoka, H. \& Maruha, J. (1986). Acta Cryst. C42, 1087-1089.
Sutton, L. E. (1965). Tables of Interatomic Distances and Configuration in Molecules and Ions. Special Publication No. 18. London: The Chemical Society.

Acta Cryst. (1992). C48, 1474-1476

Structure of p-tert-Butylbishomooxacalix[4]arene-m-Xylene (1:1) Complex

By Anthony E. Armah, Kenil Suzuki, Satoshi Fuiil and Ken-ichi Tomita
Faculty of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565, Japan
and Zouhair Asfari and JacQues Vicens
Université de Strasbourg, URA 405 de CNRS, 1 Rue Blaise Pascal, 67008 Strasbourg CEDEX, France

(Received 13 September 1991; accepted 6 January 1992)

Abstract

Tetra-tert-butyl-27,28,29,30-te-trahydroxy-2,3-dihomo-3-oxacalix[4]arene- m-xylene, $\mathrm{C}_{45} \mathrm{H}_{58} \mathrm{O}_{5} . \mathrm{C}_{8} \mathrm{H}_{10}, M_{r}=787.03$, orthorhombic, Pbcm , $a=9.328(1), \quad b=19.348$ (3), $c=25.939$ (5) $\AA, \quad V=$ 4681.4 (3) $\AA^{3}, Z=4, D_{x}=1.114 \mathrm{~g} \mathrm{~cm}^{-3}$, graphitemonochromated $\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA, \mu$ $=5.10 \mathrm{~cm}^{-1}, F(000)=1704, T=283 \mathrm{~K}$, final $R=$ 0.077 for 1446 reflections. The complex has mirror symmetry in which the plane passes through two atoms: the O and the C atoms linking the phenyl rings. $\mathrm{CH} \cdots \mathrm{O}, \mathrm{CH}_{3}-\pi$ and $\mathrm{CH}_{3}-\mathrm{CH}_{3}$ interactions are shown to exist between the host and guest. The methyl group of the guest that penetrates into the cavity of the host shows strong $\mathrm{CH} \cdots \mathrm{O}$ interactions

 of 3.393 (3) and 3.617 (3) \AA.Introduction. Calixarenes (Gutsche \& Muthukrishnan, 1978) are a class of synthetic macrocycles having phenolic residues in a cyclic array with methylene groups at positions ortho to the hydroxy group (Andreetti, Pochini \& Ungaro, 1983). Some are able to form inclusion complexes with several organic guest molecules. This inclusion behaviour depends on the size of the macroring (Andreetti, Ungaro \& Pochini, 1979). In order to elucidate the
particular host-guest interaction in the oxacalix[4]arene, we synthesized p-tert-butylbishomooxacalix[4]arene (I) and carried out an X-ray structure determination of the $1: 1$ complex with m-xylene (II).

Experimental. A colourless needle crystal $(0.1 \times 0.1$ $\times 0.5 \mathrm{~mm}$) suitable for X-ray data collection was mounted on a Rigaku AFC-5 diffractometer. Data were collected using $\omega-2 \theta$ scan technique ($2 \theta_{\text {max }}=$ 126°) and graphite-monochromated $\mathrm{Cu} K \alpha$ radiation. Unit-cell parameters were refined based on 2θ values ($48<2 \theta<60^{\circ}$) of 24 reflections. A total of

Table 1. Atomic coordinates and equivalent isotropic thermal parameters (\AA^{2}) of the non- H atoms with e.s.d.'s in parentheses

	$\boldsymbol{B}_{\text {eq }}=(4 / 3) \sum_{i} \sum_{j} \boldsymbol{\beta}_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	x	y	z	$B_{\text {eq }}$
O 2	0.4574 (9)	0.5154 (5)	0.75000^{*}	5.4 (3)
O1A	0.9869 (6)	0.5470 (3)	0.6972 (2)	4.9 (2)
$\mathrm{C} 1 A$	0.9720 (8)	0.6131 (4)	0.6772 (3)	4.0 (3)
C2A	1.0353 (8)	0.6689 (4)	0.7010 (3)	3.5 (2)
C3A	1.0112 (8)	0.7340 (4)	0.6803 (3)	4.2 (3)
C4A	0.9301 (8)	0.7458 (5)	0.6360 (4)	4.2 (3)
C5A	0.8756 (8)	0.6878 (4)	0.6116 (4)	4.1 (3)
C6A	0.8972 (8)	0.6211 (4)	0.6305 (3)	3.8 (3)
C7A	1.1220 (12)	0.6611 (6)	0.75000^{*}	4.0 (4)
C8A	0.9019 (10)	0.8196 (4)	0.6149 (4)	5.5 (3)
C9A	0.9233 (2)	0.8730 (6)	0.6556 (6)	15.5 (8)
C10A	0.9944 (2)	0.8339 (7)	0.5716 (7)	21.2 (9)
$\mathrm{Cl1A}$	0.7483 (15)	0.8288 (6)	0.6013 (9)	18.8 (9)
Ol B	0.7068 (6)	0.4972 (3)	0.6903 (2)	5.4 (2)
Cl B	0.6153 (9)	0.5228 (4)	0.6528 (3)	4.2 (3)
C2B	0.4692 (9)	0.5173 (4)	0.6590 (3)	4.5 (3)
C3B	0.3782 (8)	0.5445 (5)	0.6214 (3)	4.4 (3)
C4B	0.4307 (9)	0.5748 (4)	0.5768 (4)	4.3 (3)
C5B	0.5787 (9)	0.5785 (4)	0.5710 (3)	4.0 (3)
C6B	0.6730 (8)	0.5530 (4)	0.6093 (3)	3.9 (3)
C7B	0.8351 (8)	0.5603 (4)	0.6011 (4)	4.5 (3)
C8B	0.3265 (9)	0.6035 (5)	0.5360 (4)	4.9 (3)
C9B	0.2558 (13)	0.6679 (5)	0.5569 (5)	8.6 (5)
C10B	0.4001 (11)	0.6183 (7)	0.4848 (4)	8.3 (4)
$C 11 B$	0.2078 (11)	0.5498 (6)	0.5255 (4)	7.7 (4)
C12B	0.4045 (9)	0.4817 (5)	0.7048 (4)	5.4 (3)
$\mathrm{Cl} X$	0.5476 (2)	0.7140 (10)	0.75000^{*}	10.9 (8)
C2X	0.4910 (12)	0.7457 (7)	0.7058 (4)	9.5 (4)
C3X	0.3959 (13)	0.7998 (7)	0.7023 (5)	10.3 (5)
C4 X	0.3520 (2)	0.8261 (9)	0.75000^{*}	9.0 (7)
C5X	0.6505 (3)	0.6640 (13)	0.75000^{*}	10.6 (12)
C6 ${ }^{+}{ }^{+}$	0.3694 (2)	0.8216 (11)	0.6488 (7)	11.0 (8)

Table 2. Selected bond distances (\AA), bond angles (${ }^{\circ}$) and torsional angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{O} 2-\mathrm{Cl2B}$ - 1.43	1.430 (1)	$\mathrm{C} 1 B-\mathrm{C} 6 B \quad 1.3$. 381 (1)
$\mathrm{Ol} A-\mathrm{Cl} A \quad 1.38$	1.387 (1)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B} \quad 1.3$	1.395 (1)
$\mathrm{Cl} A-\mathrm{C} 2 A \quad 1.37$	1.375 (1)	$\mathrm{C} 2 B-\mathrm{Cl2B}$ - 1.50	1.501 (1)
$\mathrm{Cl} A-\mathrm{C} 6 A \quad 1.4$	1.406 (1)	$\mathrm{C} 3 B-\mathrm{C} 4 B \quad 1.3$	1.386 (1)
$\mathrm{C} 2 A-\mathrm{C} 3 A \quad 1.38$	1.389 (1)	$\mathrm{C} 4 B-\mathrm{C} 5 B \quad 1.39$	1.391 (1)
$\mathrm{C} 2 A-\mathrm{C} 7 A \quad 1.5$	1.514 (1)	$\mathrm{C} 4 B-\mathrm{C} 8 B \quad 1.5$	1.539 (1)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$ (1.3	1.393 (1)	$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$ - 1.4	1.414 (1)
$\mathrm{C} 4 A-\mathrm{C} 5 A \quad 1.38$	1.385 (1)	$\mathrm{C} 6 B-\mathrm{C} 7 \mathrm{~B}$ (1.5	1.533 (1)
$\mathrm{C} 4 A-\mathrm{C} 8 \mathrm{~A}$ - 1.5	1.552 (1)	$\mathrm{Cl} X-\mathrm{C} 2 X \quad 1.4$	1.403 (2)
C5A-C6A 1.397	1.397 (1)	$\mathrm{C} 1 X-\mathrm{C} 5 X \quad 1.3$	1.364 (3)
$\mathrm{C} 6 A-\mathrm{C} 7 B \quad 1.5$	1.518 (1)	$\mathrm{C} 2 X-\mathrm{C} 3 X \quad 1.3$	1.375 (3)
$\mathrm{OlB}-\mathrm{ClB}$ - 1.38	1.386 (1)	$\mathrm{C} 3 X-\mathrm{C} 4 X \quad 1.3$	1.399 (2)
$\mathrm{Cl} B-\mathrm{C} 2 B \quad 1.37$	1.376 (1)	$\mathrm{C} 3 X-\mathrm{C} 6 X \quad 1.4$	1.472 (3)
$\mathrm{O} 2-\mathrm{Cl} 2 B-\mathrm{C} 2 B$	107.5 (8)	$\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{C} 3 B$	119.5 (8)
$\mathrm{O} 1 A-\mathrm{C} 1 A-\mathrm{C} 2 A$	120.8 (8)	C1 $B-\mathrm{C} 6 B-\mathrm{C} 5 B$	118.6 (8)
$\mathrm{Ol} A-\mathrm{Cl} A-\mathrm{C} 6 A$	118.2 (8)	$\mathrm{Cl} B-\mathrm{C} 6 B-\mathrm{C} 7 B$	122.5 (9)
$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A$	118.0 (8)	$\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{Cl} 2 B$	121.7 (8)
$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 7 A$	121.9 (8)	$\mathrm{C} 2 B-\mathrm{C} 1 B-\mathrm{C} 6 B$	120.9 (8)
$\mathrm{C1} A-\mathrm{C} 6 A-\mathrm{C} 5 A$	118.4 (8)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 B-\mathrm{C} 4 B$	121.8 (8)
$\mathrm{Cl} A-\mathrm{C} 6 A-\mathrm{C} 7 B$	122.7 (8)	$\mathrm{C} 3 B-\mathrm{C} 2 B-\mathrm{C} 12 B$	118.6 (8)
$\mathrm{C} 2 A-\mathrm{C} 14-\mathrm{C} 6 A$	120.9 (8)	$\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{C} 5 B$	117.5 (8)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 A-\mathrm{C} 4 A$	123.7 (8)	$\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{C} 8 B$	120.1 (8)
$\mathrm{C} 3 A-\mathrm{C} 2 A-\mathrm{C} 7 A$	120.0 (8)	$\mathrm{C} 4 B-\mathrm{C} 5 B-\mathrm{C} 6 B$	121.6 (8)
$\mathrm{C} 3 A-\mathrm{C} 4 A-\mathrm{C} 5 A$	116.4 (8)	$\mathrm{C} 5 B-\mathrm{C} 4 B-\mathrm{C} 8 B$	122.4 (8)
$\mathrm{C} 3 A-\mathrm{C} 4 A-\mathrm{C} 8 A$	122.3 (8)	$\mathrm{C} 5 B-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 B$	119.0 (8)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 A-\mathrm{C} 6$ A	122.3 (9)	$\mathrm{C} 1 X-\mathrm{C} 2 X-\mathrm{C} 3 X$	128.9 (14)
C5A-C4A-C8A	121.4 (8)	$\mathrm{C} 2 X-\mathrm{C} 1 X-\mathrm{C} 5 X$	125.1 (19)
C5A-C6A-C7B	119.0 (8)	$\mathrm{C} 2 X-\mathrm{C} 3 X-\mathrm{C} 4 X$	114.1 (13)
C6 $A-\mathrm{C} 7 B-\mathrm{C} 6 B$	112.2 (7)	$\mathrm{C} 2 X-\mathrm{C} 3 X-\mathrm{C} 6 X$	112.9 (13)
$\mathrm{O} 1 B-\mathrm{C} 1 B-\mathrm{C} 2 B$	120.2 (8)	C4X-C $3 X-\mathrm{C} 6 X$	132.9 (14)
$\mathrm{O} 1 B-\mathrm{C} 1 B-\mathrm{C} 6 B$	119.0 (8)		
$\mathrm{C1} A-\mathrm{C} 2 A-\mathrm{C} 7 A-\mathrm{C} 2 A^{\prime}$	$A^{\prime}-90.6(11)$	$\mathrm{C} 6 A-\mathrm{C} 7 B-\mathrm{C} 6 \mathrm{~B}-\mathrm{Cl} B$	- 79.9 (11)
$\mathrm{C} 1 A-\mathrm{C} 6 A-\mathrm{C} 7 B-\mathrm{C} 6 B$	$B \quad 101.6$ (10)	$\mathrm{C} 2 B-\mathrm{C} 12 \mathrm{~B}-\mathrm{O} 2-\mathrm{Cl} 2 B^{\prime}$	-177.4 (8)

carried out on an ACOS-930 computer at the Research Center for Protein Engineering, Institute for Protein Research, Osaka University, Japan.

Discussion. Final positional and equivalent isotropic thermal parameters of non-H atoms are listed in Table 1.* The bond distances, bond angles and selected torsional angles are shown in Table 2. These bond distances and angles were found to compare well with those of other oxacalixarenes; tertbutylhexahomotrioxacalix[3]arene (Suzuki, Minami, Yamagata, Fujii, Tomita, Asfari \& Vicens, 1992), p-isopropylbishomooxacalix[4]arene- o-xylene (1:1) (Suzuki, Armah, Fujii, Asfari, Vicens \& Tomita, 1991). The molecular structure (Fig. 1) shows the 'cone' conformation (Gutsche, Dhawan, Levin, No \& Bauer, 1983) of the host molecule with the guest molecule occupying the cavity created. In the structure, the mirror symmetry passes through O 2 and $\mathrm{C} 7 A$ of the host molecule. This mirror symmetry also passes through C5 $X, \mathrm{C} 1 X$ and $\mathrm{C} 4 X$ of the guest indicating two possible positions for the C6 X methyl group. The dihedral angles formed between the horizontal plane composed of the four centroids of the aromatic rings and each of the aromatic rings A and

[^0]$$
\mathrm{C}_{45} \mathrm{H}_{58} \mathrm{O}_{5} \cdot \mathrm{C}_{8} \mathrm{H}_{10}
$$

Fig. 1. An ORTEP (Johnson, 1965) plot of the host-guest complex (a) viewed through the mirror plane (the broken line indicates the mirror plane) and (b) viewed parallel to the plane of the guest molecule.
B are 58.5 (2) and 41.0 (2) $)^{\circ}$, respectively. The methyl group, C5X, of the guest was found to be directed towards the cavity. This methyl group penetrates directly and deeper into the cavity showing $\mathrm{CH}_{3}-\pi$ interaction between the guest and the host molecule. This interaction could be between the π electrons of the aromatic ring of the host molecule and the methyl group of the guest molecule. Also likely to be a factor in the interaction is the presence of the O 2 atom of the host molecule. The introduction of this O atom widens the space of the 'cone' shape to produce the ellipsoidal cavity which nicely fits the molecular dimensions of the guest molecule, and also
indicates the possible interaction with the C5X methyl group of the guest molecule: a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction. This particular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction may be a very important key for the separation of the structural isomers of the guest molecules by the extractive crystallization with calixarenes, which shows about 73\% extraction for m-xylene (Vicens, Armah, Fujii \& Tomita, 1991). In the m-xylene molecule, disorder was observed. Several high thermal parameters (Table 1) probably result from the disorder, which may be the reason for the high R value.

References

Andreetti, G. D., Pochini, A. \& Ungaro, R. (1983). J. Chem. Soc. Perkin Trans. 2, pp. 1773-1779.
Andreetti, G. D., Ungaro, R. \& Pochini, A. (1979). J. Chem. Soc. Chem. Commun. pp. 1005-1007.
Gutsche, C. D., Dhawan, B., Levine, J. A., No, K. H. \& Bauer, L. J. (1983). Tetrahedron, 39, 409-426.

Gutsche, C. \& Muthukrishnan, R. (1978). J. Org. Chem. 43, 4905-4906.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.
Suzuki, K., Armah, A. E., Fuili, S., Asfari, Z., Vicens, J. \& Tомita, K.-I. (1991). Chem. Lett. pp. 1699-1702.
Suzuki, K., Minami, H., Yamagata, Y., Fuit, S., Tomita, K.-I., Asfari, Z. \& Vicens, J. (1992). Acta Cryst. C48, 350-352.
The Universal Crystallographic Computing System-Osaka (1979). Library of Programs, Research Center for Protein Engineering, Institute for Protein Research, Osaka Univ., Japan.
Vicens, J., Armah, A. E., Fuji, S. \& Tomita, K.-I. (1991). J. Inclusion Phenom. 10, 159-163.

Acta Cryst. (1992). C48, 1476-1479

Structure of a Highly Substituted Pyrazolidin-3-one

By Alan T. Johnson, Douglas A. Keszler, Steven T. Perri and James D. White
Department of Chemistry, Oregon State University, Gilbert Hall 153, Corvallis, OR 97331-4003, USA

(Received 30 July 1991; accepted 13 January 1992)

Abstract

Trimethylsilylethyl cis-4,5-dimethyl-1-(o-nitrobenzyl)-3-oxopyrazolidine-2-carboxylate, $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Si}, \quad M_{r}=393.51$, triclinic, $\quad P \overline{1}, \quad a=$ 11.237 (3),$\quad b=13.073$ (2), $\quad c=8.040$ (3) $\AA, \quad \alpha=$ $106.40(2), \quad \beta=105.48(2), \quad \gamma=85.70(2)^{\circ}, \quad V=$ 1092.0 (5) $\AA^{3}, Z=2, D_{x}=1.20 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \alpha)$ $=0.71069 \AA, \quad \mu=1.32 \mathrm{~mm}^{-1}, \quad F(000)=420, \quad T=$ $296 \mathrm{~K}, R=0.063, w R=0.083$ for 1970 observed unique reflections. The observed structure establishes

the relative stereochemistry between the C 2 and C 3 methyl groups as cis. The nitro group is twisted out of the plane containing the phenyl ring by 32.7 (7) ${ }^{\circ}$, and the N1-N2 bond distance of 1.435 (4) \AA is representative of an $\mathrm{N}-\mathrm{N}$ single bond.

Introduction. The clinical importance of antibiotics containing a β-lactam ring has led to intense study of the reactivity and synthesis of compounds
© 1992 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55005 (14 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS0555]

